$EmStat4S^{m}$

POTENTIOSTAT | GALVANOSTAT | IMPEDANCE ANALYZER (optional)

Rev. 04-2024-01

Contents

Desktop performance in the palm of your hand	3
Supported Techniques	4
Measurement Specifications	5
System Specifications	6
EmStat4S LR EIS Accuracy Contour Plot	8
EmStat4S HR EIS Accuracy Contour Plot	8
Standard EmStat4S Kit	9
PSTrace: Software for Windows	10
EmStat4S works with MethodSCRIPT™	12
Software Development Kits for .NET	13
PStouch: App for Android	14

> See for more information: www.palmsens.com/emstat4s

Emst

software for

Desktop performance in the palm of your hand

The EmStat4S is a portable, USB-powered Potentiostat, Galvanostat, and optional Frequency Response Analyser (FRA) for Electrochemical Impedance Spectroscopy (EIS). The EmStat4S Low Range version is great for applications that require measuring low currents down to picoamps, whereas the High Range version is very suitable for applications that need a maximum current of up to 200 mA.

Main differences between the Low Range (LR) and High Range (HR) versions:

	Stransporter Sta	
	EmStat4S LR	EmStat4s HR
 potential range 	±3 V	±6 V
• max. compliance	±5 V	±8 V
current ranges	1 nA to 10 mA (8 ranges)	100 nA to 100 mA (7 ranges)
• max. current	±30 mA	±200 mA
• FRA/EIS (optional)	10 µHz to 200 kHz	
electrodes	WE, RE, CE, and ground, 2 mm banana plugs	WE, RE, CE, S, and ground, 2 mm banana plugs

Always a backup

The EmStat4S is equipped with 500 MB internal storage memory. This means all your measurements can be saved on-board as a backup. All internally stored measurements can be browsed and transferred back to the PC easily using PSTrace.

Your data is always with your instrument wherever you take it.

Supported Techniques

The EmStat4S supports the following electrochemical techniques:

Voltammetric techniques

	Linear Sweep Voltammetry Cyclic Voltammetry Fast Cyclic Voltammetry AC Voltammetry	LSV CV FCV ACV
•	AC Voltammetry	ACV

Pulsed techniques

•	Differential Pulse Voltammetry	DPV
-	Square Wave Voltammetry	SWV

Normal Pulse Voltammetry
 NPV

These methods can all be used in their stripping modes which are applied for (ultra-) trace analysis.

Amperometric techniques

	Chronoamperometry Zero Resistance Amperometry Chronocoulometry MultiStep Amperometry Fast Amperometry Pulsed Amperometric Detection	CA ZRA CC MA FAM PAD
Gal	vanostatic techniques	
-	Linear Sweep Potentiometry	LSP

	Chronopotentiometry	CP
•	MultiStep Potentiometry	MP
•	Open Circuit Potentiometry	OCP

Other

- Mixed Mode
 MM
- Potentiostatic and Galvanostatic
 Impedance spectroscopy at fixed frequency or frequency scan vs
 - fixed potential or fixed current
 - o scanning potential or scanning current
 - o time
- Fast EIS/GEIS FEIS/FGEIS
 Very low interval fixed-frequency measurements

MethodSCRIPT[™] allows for developing custom techniques. See page 12 for more information.

Measurement Specifications

	Parameter	Min	Мах
	 Conditioning time 	0	4000 s
All	 Deposition time 	0	4000 s
techniques (unless	 Equilibration time 	0	4000 s
otherwise specified)	 Step potential 	LR: 0.100 mV HR: 0.183 mV	250 mV
	 N data points 	3	1 000 000
• NPV • DPV	 Scan rate 	LR: 0.1 mV/s (100 μV step) HR: 0.1 mV/s (183 μV step)	1 V/s (5 mV step)
- DFV	 Pulse time 	0.4 ms	300 ms
• SWV	 Frequency 	1 Hz	1250 Hz
• LSV • CV	 Scan rate 	LR: 0.01 mV/s (100 µV step) HR: 0.01 mV/s (183 µV step)	500 V/s (200 mV step)
	 Scan rate 	LR: 0.1 mV/s (100 μV step) HR: 0.01 mV/s (183 μV step)	500 V/s (50 mV step)
• FCV	 N averaged scans 	1	65535
	 N equil. scans 	0	65535
	 Interval time 	50 ms	4294 s
• PAD	 Pulse time 	1 ms	1 s
	 N data points 	3	1 000 000 (> 100 days at 10 s interval)
• CA	 Interval time 	0.4 ms	4294 s
• CP • OCP	 Run time 	1 ms	> year
	 N cycles 	1	20000
- MM - MA	N levels	1	255
• MP	 Level switching overhead time 	~1 ms (typical)	-
	 Interval time 	0.4 ms	4294 s
	 Interval time 	1 µs	60 s
• FAM	 Run time 	3 µs	34 days (60 s interval) 50 ms (1 µs interval)
	 N data points 	3	50000
• Fast EIS	Interval time between points at fixed frequency	~1 ms (typical)	-

The following table shows limits for some technique-specific parameters.

System Specifications

General		
	LR	HR
 dc-potential range 	±3 V	±6 V
 compliance voltage 	±5 V	±8 V
- maximum current	±30 mA	±200 mA
 max. data acquisition rate 	1M samples/s	
 control loop bandwidth (stability setting) 	320 Hz, 3.2 kHz, 30 kHz or 570 kHz	
 current follower bandwidth 	23 Hz in 1 nA and 10 nA range 2.3 kHz in 100 nA and 1 uA range 230 kHz in 10 uA and 100 uA range > 500 kHz in ranges 1 mA and higher	

Potentiostat (controlled potential mode)		
	LR	HR
 applied potential resolution 	100 µV	183 μV
 applied potential accuracy 	\leq 0.2% ±1 mV offset	
current ranges	1 nA to 10 mA (8 ranges)	100 nA to 100 mA (7 ranges)
 measured current resolution 	0.009% of CR (92 fA on 1 nA	A range)
 measured current accuracy 	< 0.2% of current ±20 pA ±0.2% of range	< 0.2% of current ±0.2% of range

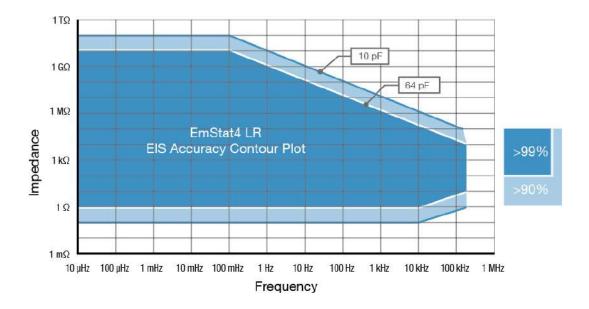
Galvanostat (controlled current mode)

	LR	HR
current ranges	10 nA, 1 uA, 100 uA, 10 mA (4 ranges)	1 uA, 100 uA, 10 mA, 100 mA (4 ranges)
 applied dc-current 	±3 * CR (current range)	
 applied dc-current resolution 	0.01% of CR	0.0183% of CR
 applied dc-current accuracy 	< 0.4% of current ±20 pA ±0.2% of range	< 0.4% of current ±0.2% of range
 potential ranges 	50 mV, 100 mV, 200 mV, 500 mv, 1 V	
 measured dc-potential resolution 	96 μV at ±3 V (1 V range) 48 μV at ±1.5 V (500 mV) 19.2 μV at ±0.6 V (200 mV) 9.6 μV at ±0.3 V (100 mV) 4.8 μV at ±0.150 V (50 mV)	193 μV at ±6 V (1 V range) 96.5 μV at ±3 V (500 mV) 38.5 μV at ±1.2 V (200 mV) 19.3 μV at ±0.6 V (100 mV) 9.65 μV at ±0.3 V (50 mV)
 measured dc-potential accuracy 	\leq 0.2% potential, ±1 mV offs	et

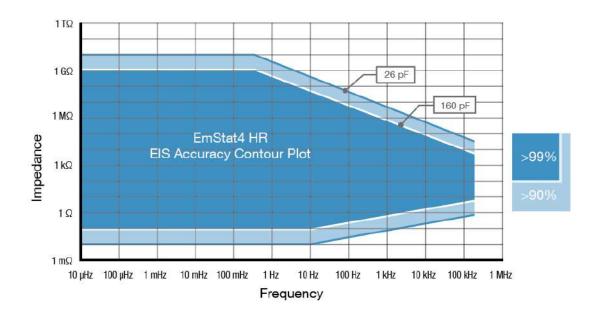
EmStat4S Potentiostat / Galvanostat / Impedance Analyzer

FRA / EIS (impedance measurements)	
 frequency range 	10 µHz to 200 kHz
 ac-amplitude range 	1 mV to 900 mV rms, or 2.5 V p-p

GEIS (galvanostatic impedance measurements)	
 frequency range 	10 µHz to 100 kHz
 ac-amplitude range 	0.9 * CR A rms


Electrometer	
 electrometer amplifier input 	> 1 TΩ // 10 pF
- bandwidth	500 kHz

Other			
	LR	HR	
 electrode connections 	WE, RE, CE, and ground, with 2 mm banana plugs	WE, RE, CE, S and ground, with 2 mm banana plugs	
 power consumption 	0.75 W @ 1 mA (WE) 1.25 W @ 30 mA (WE)	1.25 W @ 1 mA (WE) 1.6 W @ 30 mA (WE) 3.75 W @ 200 mA (WE)	
 power + communication 	USB-C		
- housing	aluminium body: 7.2 x 5.5 x 2.6 cm		
- weight	~130 g		
 internal storage space 	500 MB, equivalent to >15M datapoints or ~1000 measurement files (whichever comes first)		



EmStat4S HR EIS Accuracy Contour Plot

Note

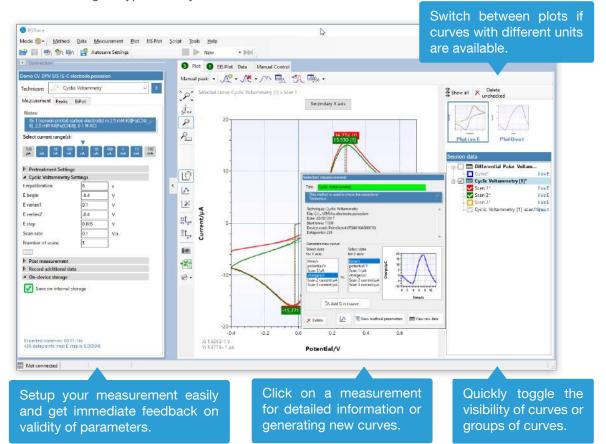
The accuracy contour plots were determined with an ac-amplitude of ≤ 10 mV rms for all limits, except for the high impedance limit, which was determined using an ac-amplitude of 250 mV. The standard 1 meter cell cables were used. Please note that the true limits of an impedance measurement are influenced by all components in the system, e.g. connections, the environment, and the cell.

Standard EmStat4S Kit

A standard EmStat4S kit includes a rugged carrying case with:

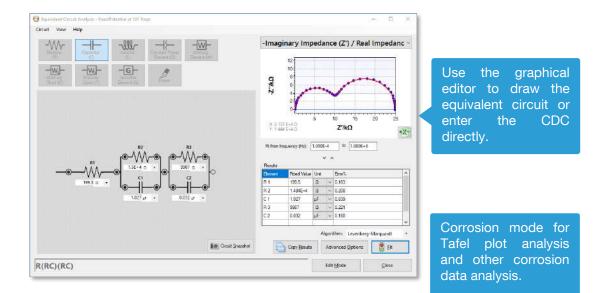
- EmStat4S LR or HR
- USB-C cable
- USB-C splitter cable for extra power (EmStat4S HR only)
- 1 meter cell cable with 2 mm banana pins
- 4 or 5 croc clips
- Dummy Cell

Also included:


- PSTrace software for Windows (on USB drive)
- Manual (hardcopy)
- Quick Start document
- Calibration report

PSTrace: Software for Windows

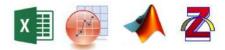
PSTrace is designed to get the most out of your instrument right after installation, without going through a long learning period. It has three modes: the Scientific mode which allows you to run all the techniques our instruments have to offer, and two dedicated modes for Corrosion analysis and the Analytical Mode. The Analytical Mode is designed for use with (bio)sensors and allows you to do concentration determinations. Extensive help files and prompts guide the user through a typical analysis.


Scripting

The intuitive script editor allows for easily creating a sequence of measurements or other tasks, by means of dragging and dropping actions in a list.

Common Advanced Electrochemistry Measurement	Cell	
Call	Repeat 1	Find peaks ?
SetCurrent SetPotental	SetPotential 1.000 V Wait 5 seconds	Mode: Use window > Number of peaks: 1 (*)
C ReadPotential	Measurement PSDiRPuls=(DPV)	Window for Peak 1 Left: -0.200 Right: 0.200
Wat Repost		
End Peaka Fast/Aoda External IO SetChannel		Output will be saved in: CAUsers/Niels van Velzen/CloudStation/PSData/scriptou
NextChannel PrevChannel		
Stimer		

EmStat4S Potentiostat / Galvanostat / Impedance Analyzer



Other functions in PSTrace

- Concentration determination
- Advanced peak search algorithms
- Open your data in Origin and Excel with one click of a button
- Save all available curves, measurement data and methods to a single file
- Load measurements from the internal storage
- Direct validation of method parameters
- Run custom MethodSCRIPTS[™]

Integration with third party software

- Excel
- Origin
- Matlab
- ZView

Minimum System Requirements

Windows 7, 8, 10 or 11

3

- 1 GHz or faster 32-bit (x86) or 64-bit (x64) processor
- 2 GB RAM (32-bit) or 4 GB RAM (64-bit)
- Screen resolution of 1280 x 800 pixels

> See for more information: www.palmsens.com/pstrace

EmStat4S works with MethodSCRIPT™

The MethodSCRIPT[™] scripting language is designed to integrate our instruments and potentiostat (modules) effortlessly in your hardware setup, product, or experiment.

MethodSCRIPT[™] gives you full control over your potentiostat. The simple script language is parsed on-board the instrument and allows for running all supported electrochemical techniques, making it easy to combine different measurements and other tasks.

MathedCOUDT and he apparented	
MethodSCRIPT can be generated,	1 e
edited, and executed in PSTrace.	2 var c 3 var p
	4 #Select bandwidth of 40 for 10 points per second
	5 set_max_bandwidth 40
MethodSCRIPT features include:	6 #Set current range to 1 mA
	7 set_range ba 1m
 Use of variables 	8 #Enable autoranging, between current of 100 uA and 1 mA 9 set autoranging ba 100u 1m
 (Nested) loops and conditional 	10 #Turn cell on for measurements
	11 cell_on
logic support	12 #equilibrate at -0.5 V for 5 seconds, using a CA measurement
 User code during a 	13 meas_loop_ca p c -500m 500m 5 14 pck start
•	15 pck add p
measurement iteration	16 pck_add c
	17 pck_end
 Exact timing control 	18 endloop 19 #Start LSV measurement from -0.5 V to 1.5 V, with steps of 10 mV
 Simple math operations on 	20 #and a scan rate of 100 mV/s
	21 meas_loop_lsv p c -500m 1500m 10m 100m
variables (add, sub, mul, div)	22 #Send package containing set potential and measured WE current
Digital I/O, for example for	23 pck_start

25

34

pck_add c pck_end

if c > 1200u abort

Online support on MethodSCRIPT

#Abort if current exceeds 1200 uA

29 abort
30 endloop
31#Turn off cell when done or aborted
32 on_finished:
33 cell_off

- Digital I/O, for example for waiting for an external trigger
- Logging results to internal storage or external SD card
- Reading auxiliary values like pH or temperature
- and many more...

Write your own software and integrate (generated) MethodSCRIPTs. No libraries needed.

MethodSCRIPT is parsed on-board the instrument. No DLLs or other type of code libraries are required for using MethodSCRIPT[™]

> See for more information: www.palmsens.com/methodscript

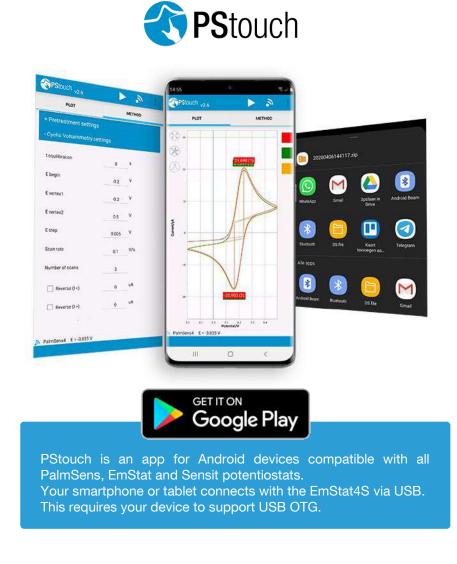
Software Development Kits for .NET

Develop your own application in no time for use with any PalmSens instrument or potentiostat (module). Our SDKs are free of charge.

There are three PalmSens Software Development Kits (SDKs) for .NET. Each SDK can be used with any of our instruments or OEM potentiostat modules to develop your own software. The SDK's come with a set of examples that shows how to use the libraries. PalmSens SDKs with examples are available for the following .NET Frameworks:

- WinForms
- Xamarin (Android)
- WPF

Each SDK comes with code examples for:


- Connecting
- Running measurements and plotting data
- Manual control of the cell
- Accessing and processing measured data
- Analyzing and manipulating data
- Peak detection
- Equivalent Circuit Fitting on impedance data
- Saving and loading files

/// <summary>
/// Initializes the EIS method.
/// Initializes the EIS method.
/// </summary>
Ireference
private void InitMethod()
{
 _methodEIS = new ImpedimetricMethod();
 _methodEIS.ScanType = ImpedimetricMethod.enumScanTi
 _methodEIS.Potential = 0.0f; //0.0V DC potential
 methodEIS.Eac = 0.01f; //0.01V RMS AC potential a
 methodEIS.FreqType = ImpedimetricMethod.enumFrequ
 _methodEIS.MaxFrequency = 105f; //Max frequency is
 _methodEIS.nFrequencies = 11; //Sample at 11 diffe
 _methodEIS.Ranging.StartCurrentRange = new Current
 _methodEIS.Ranging.MaximumCurrentRange = new Current
}

See for more information: www.palmsens.com/sdk

PStouch: App for Android

PStouch features:

- Setting up and running measurements
- Loading and saving measured curves
- Analyzing and manipulating peaks
- Sharing measurement data directly via any service like email or Dropbox
- Concentration determination by means of Standard Addition or Calibration Curve
- Support for PalmSens accessories such as a Multiplexer or Stirrer
- All method and curve files are fully compatible with PSTrace software for Windows.

> See for more information: www.palmsens.com/pstouch

Please do not hesitate to contact PalmSens for more details: info@palmsens.com

PalmSens BV The Netherlands www.palmsens.com

Distributor in Greece:

T. 210 72.43.529 - 6979 64.23.95 **email:** info@apples.com.gr **site:** www.apples.com.gr

DISCLAIMER

Changes in specifications and typing errors reserved. Every effort has been made to ensure the accuracy of this document. However, no rights can be claimed by the contents of this document